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ABSTRACT 
A novel approach to (It)-epipodophyllotoxin (2) and hence also (+)-podophyllotoxin (1) is 
described, involving as a key-step the stereoselective ring closure of the TMS-ester 
derived from 14a to the tetralin derivative 15 with mesyl chloride. - 

Podophyllotoxin (1) and epipodophyllotoxin (2) are two naturally occuring lignans3 

with potent antimitotic 4 activity . Apart from the first non-stereoselective synthesis 
5 reported by Gensler , to date only two total synthesis of 1 have been disclosed6. This 

is due to problems associated with the highly strained trans B/C ring junction and the 

axially locked C-l aryl substituent. As 1 and 2 can be interconverted', stereocontrol at 

C-4 is of less importance. 
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Our synthetic strategy centers around the construction of the tetraline involving 

as crucial step the l-8a bond formation. Although efforts along this line have been 

reported8, ring closure via an electrophilic substitution process has until now failed 

to produce the correct relative stereochemistry at C-l, 2 and 3. It should be noted that 

the configuration at these three contiguous chiral centers in 1 or 2 is 

thermodynamically unstable (epimerization at C-2)3a. It seemed to us that a study of the 

stereochemical outcome of this ring closure on a conformationally less flexible system 

(such as present in diastereoisomers 2) could be rewarding. Inspection of molecular 

models suggested that induction at the centers C-l and C-2 would be optimal with both 

the aryl group at C-4 and the side chain at C-3 in a cis-relationship as _ in 3 9. 

Therefore, epipodophyllotoxin (2) became the primary target molecule. Although the 

expectation concerning the 2-position was not completely fulfilled, the present study 

led to the discovery of a viable route to I_ and 2. 
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Intermediate L was obtained via initial aldol condensation of the 

tin-(II)-enolate 10 of N-(4-pentenoyl)-thiazolidine-2-thione (A)l' with piperonal, 

yielding exclusively the desired erythro-isomer (90%). Subsequent methanolysis then gave 

2 (62X)l'. Reduction of J, yielded the diol which was protected (81%) as the 

di-t.butylsilylene derivative12?13, using Corey's procedure13. Unmasking the latent 

carboxyl group was best effected via a 3-step procedure, leading to 5 in 82% overall 

yield14p15. 

In contrast with our expectations, aldol condensation of 1 with 

3,4,5_trimethoxybenzaldehyde showed low stereocontrol. By properly choosing the reaction 

conditions, either 86 (enolate formation in THF; addition of the aldehyde at -78' C, 

followed by warming up to -10' C over 90 min, and quenching with NH4Cl; 44%), or a 1:l 

mixture of 8a and E with only minor amounts of 8c and 8d could be obtained (enolate - - - 

formation in ether; addition of the aldehyde at -lOO"C, followed by immediate quench 

with acetic acid at -1OO'C; 68%).16 

Study of the electrophilic ring closure of the different isomers gwas now 

undertaken. Treatment with a variety of acid catalysts (TFA, SnC14, Zn12) failed to 

produce the desired tetraline 2. Instead, dihydronaphtalenes 10 (arising from - 

SE-reaction of a 4-carbenium ion on ring D) and tetrahydrofurans 11 (from internal - 

displacement at C-4) were invariably formed. This indicates that in this case, when one 

of the oxygens of the silylene ether is benzylic, this protective group is not stable 

towards Lewis acid-catalyzed intramolecular displacement reactions. 17 

In order to ensure regioselective formation of a C-l carbenium ion, we decided to 
18 replace the hydroxyl function in 8 with a sulfide group , via the mesylate. Much to our 

surprise, treatment of 8a with mesylchloride (NEt3, CH2C12, -1OOC) afforded directly, in - 

90% yield, tetraline 9 , with the correct stereochemistry at all centers. Under the same 

conditions, 8c produced the C-l epimer of 2, thus - indicating a neat SN2-type 

displacement at C-11'. However, & and w gave rise to mixtures of B and 11, showing 

that inversion of the configuration of C-2 has severe implications for the ring closure 

reaction, inhibiting the reacting centers C-l and C-8a to approach in the desired 

rotameric form. 

Transformation of 2 into 2 requires hydrolysis of the methyl ester prior to 

deprotection of the 1,3-diol, in order to prevent epimerization at C-2 6a. Attempts to 

hydrolyze ester 2 invariably led to the neopodophyllotoxin derivative E 21 via internal 

nucleophilic displacement at C-4. 

This problem was circumvented by performing the aldol condensation on the 

trimethylsilylester 13 , which led to a different product distribution: 14a and 14~ were 

obtained in a 4:5 ratio (45%)21. Selective in situ protection of the acid function in 

14a with a trimethylsilyl group, subsequent treatment with mesylchloride (NEt3, CH2C12, 

-1O'C) and aqueous work-up afforded the desired acid 15 (45%)22. Cleavage of the silyl - 
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protective group (TBAF, THF, r.t., 16 h) and lactonization (DCC, DMAP, CH2C12, r.t., 

16 h) gave (+)-2_, identical, except for rotation, with a sample of natural 

(-)-epipodophyllotoxin (2) - 23. Since 2 has previously been converted to podophyllotoxin 

(1)7a, this work also constitutes a formal synthesis of 1. 

OMe 

OR 

a) Sn(OS02CF3)2 (1.25 eq.), N-Et-piperidine, CH2C12, -78'C; b) K2C03. MeOH, r.t., 10 min; c) 

LiAlH4, (1.5 moleq.), THF, O“C, 1 h; d) (t.Bu)2Si(OS02CF3)2 (1.2 eq.), 2,6-lutidine (3 eq.), 

CH2C12, O"C, 2 h; e) clsO4, (1 mol %), NMMO (1 eq.), acetone-xater (3 : I), r.t., 16 h; i) Na104 

(3.3 eq.), acetone-water (3 : l), r.t., 2 h; g) NaC102 (1.25 es.), 2-Me-2-butene (10 es.), 

t.BuOH-water (5 : l), pH 3 (NaH2P04-buffer), r.t., 30 min; h) CH2N2, ether, 0“C; i) LDA (2 eq.), 

-78'C to -4O'C, ether, 90 min.; Ar'CHO (1.2 eq.), -lOO'C, 1 min; 10 % HOAc in ether, -100' C 

(inverse quench): j) LDA (2 es.), THF, -78'C to -4O'C, 90 min; Ar'CHO (1.2 eq.) , -30°C to lO"C, 

90 min; NH4Cl; k) LDA (3 eq.), -78'C to -4O"C, THF, 90 min; Ar'CHO (1.2 es.), -78*C, 3 min; 10 % 

HOAc in ether, -7S'C (inverse quench); 1) T!YSCl (1.1 eq.), NEt3 (1.1 eq.), THF, Cf'C, 15 min. 

8a R =Me 8b R-Me 8c R-Me 8d R=Me 
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With the valuable information that only diastereomer 8a leads to the desired - 

relative configuration present in the target molecules, a stereoselective synthesis of 

8a is presently studied. Also an asymmetric synthesis of L and 2 is in progress. - 
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